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   Abstract— In many cases interesting dynamic are not linear by nature, so the traditional Kalman filter cannot be applied in estimating the state of   
such a system. In these kinds of systems, both the dynamics and the measurement processes can be nonlinear, or only one of them. In this paper, an 
extension to the traditional Kalman filter will be described, which can be applied for estimating nonlinear dynamic systems, that is called Unscented Kal-
man filter (UKF) based on the unscented transformation of the joint distribution. Then this method  is used for the estimation of the states of the Boiler-
Turbin Model. Simulation results show the effectiveness of this method. 

 

Index Terms— Kalman Filter (KF), Unscented Kalman Filter (UKF), Extended Kalman Filter (EKF), Boiler- Turbin Model 

——————————      —————————— 

1 INTRODUCTION                                                                     
stimating the state of a dynamic system is a fundamental 
problem in the process industries. State estimation often-
play an important role in accomplishing this goal in pro-

cess control and performance monitoring applications. De-
pending on the type of process and the operating region of the 
process, some processes can be approximated with alinear 
model and the KF (Kalman filter) can be used for state estima-
tion. Theorically the kalman filter is an estimator for what is 
called the linear quadratic problem, which is the problem of esti-
mating the state of a linear dynamic system, so for nonlinear dy-
namic, the most successful techniques for state estimation are 
Bayesian filters such as particle filters or extended and un-
scented Kalman filters [1]. Bayes filters recursively estimate 
posterior probability distributions over the state of a system. 
The key components of a Bayes filter are the prediction and 
observation models, which probabilistically describe the tem-
poral evolution of the processand the measurements returned 
by the sensors, respect tively. Typically, these models are par-
ametric descriptions of the involved processes. The most 
common way of applying the KF to a nonlinear system is in 
the form ofthe extended K alman filter (EKF). In the EKF, the 
pdf is propagated through a linear approximation of the sys-
tem around the operating point at each time instant. In doing 
so, the EKF needs the Jacobian matrices which may be difficult 
to obtain for higher order systems, especially in the case of 
time-critical applications. Further, the linear approximation of 
the system at a given time instant may introduce errors in the 
state which may lead the state to diverge over time. In other 
words, the linear approximation may not be appropriate for  
some systems. In order to overcome the drawback EKF, other   
nonlinear state estimators have been developed such as the  
 

Unscented Kalman Filter (UKF) [2], the ensemble Kalman fil-
ter (EnKF) [8] and high order EKFs. The EnKF is especially 
designed for large scale systems, for instance, oceanographic 
models and reservoir models [3]. The UKF seems to be a 
promising alternative for process control applications [4-6]. 
The UKF propagates the pdf in a simple and effective way and 
it is accurate up to second order in estimating mean and co-
variance [8]. The present paper focuses on using the UKF for 
nonlinear state estimation in process systems and the perfor-
mance is evaluated in comparison with the EKF.The paper-
proposes a simple method to incorporate state constraints in 
the UKF. 
In a boiler-turbine unit, steam from the boiler enters the high-
pressure cylinder of a condensing turbine and, after passing 
through it, returns to the boiler, entering through an interme-
diate superheater. The secondary superheated steam is fed 
into the medium-pressure cylinder of the turbine and then 
into the low-pressure cylinder and the condenser. The water is 
removed from the condenser by a pump. It then passes 
through the low-pressure and high-pressure feed-water heat-
ers and a deaerator and enters the boiler. Usually, a boiler 
cannot operate at loads below a certain value for a number of 
reasons (for example, the conditions of cooling of the tubes of 
heating surfaces); therefore, some-times more steam is gener-
ated than is required for the turbine (for example, during the 
start-up of a unit) [7]. In such cases the excess steam is 
dumped into the condenser through a reduction device. Then 
Bell and Astrom produce a 3rd order non-linear MIMO model 
with fuel flow, control valve position, and feedwater flow as 
control inputs, and drum pressure, power output, and drum 
water level deviation as outputs. Boiler- turbin unit is a multi-
variable, time varying and nonlinear system with strong cou-
pling between the parameters.  
In this paper, the states of boiler- turbin are estimated with 
unscented kalman filter.  In section 2, The Unscented kalman 
filter is introduced. Then in section 3, the Boiler- turbin unit is 
described. Section 4 discusses the simulation results followed by 
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conclusions in section 5. 
 

2 UNSCENTED KALMAN FILTER 
2.1 Unscented transform 
The unscented transform (UT) (Julier et al., 1995; Julier and 
Uhlmann, 2004b;Wan and van der Merwe, 2001) can be used 
for forming a Gaussian approximation to the joint distribution 
of random variables x and y. In UT we deterministically 
choose a fixed number of sigma points, which capture the de-
sired moments (at least mean and covariance) of the original 
distribution of x exactly. 
After that we propagate the sigma points through the non-
linear function g and estimate the moments of the transformed 
variable from them [8]. 
The advantage of UT over the Taylor series based approxima-
tion is that UT is better at capturing the higher order moments 
caused by the non-linear transform, as discussed in (Julier and 
Uhlmann, 2004b). Also the Jacobian and Hessian matrices are 
not needed, so the estimation procedure is in general easier 
and less error-prone. The unscented transform can be used to 
provide a Gaussian approximation for the joint distribution of 
variables x and y of the form 
 
 

(1) 
 

1. Compute the set of 2n + 1 sigma points from the 
columns of the matrix ( )n Pλ+  
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and the associated weights: 
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Parameter λ is a scaling parameter, which is defined as 

 
                                        (4) 

                                                        

The positive constants α,β and k  are used as parameters of the 

method. 
2. Propagate each of the sigma points through non-

linearity as 
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3. Calculate the mean and covariance estimates for y as 
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4. Esti-

mate the cross-
covariance between x and y as 
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The square root of positive definite matrix P is defined as 

A P= where 
TP AA=  

To calculate the matrix A we can use, for example, lower 
triangular matrix of the Cholesky  factorialization. 

 
2.2 Unscented Kalman Filter 
 
The unscented Kalman filter (UKF), makes use of the unscent-
ed transform described above to give a Gaussian approxima-
tion to the filtering solutions of non-linear optimal filtering 
problems of form 

( )k k 1 k 1f x , k 1 qx − −= − +
                                                 (8)   

 

 
 

 
 

Where n
kx R∈  is the state, m

ky R∈ is the measurement, 

1 1(0, )k kq N Q− −≈ is the Gaussain Noise process,  

(0, )k kr N R≈ is the Gaussian measurement noise. The pre-
diction and update steps are in the following way: 
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Prediction: Compute the predicted state mean mk

− and the 
predicted covariance 𝑃𝑘− as 

 
 
 

( )k k 1f k 1ˆ ,XX −= −  

ˆk k mm x w− =  
                                                                                                   (9)   

 
 

 
Update: Compute the predicted mean µk and covariance of 
the measurement Sk, and the cross-covariance of the state and 
measurement Ck: 

, , 0k k k k kX m m c P P− − − − −  = …… +   
 

 
 
 

𝜇𝑘 = 𝑌k−wm 
                                                                                             (10) 

𝑆𝑘 = 𝑌k−w[𝑌k−]T + Rk 
 
𝐶𝑘 = 𝑋𝑘−𝑊[𝑌k−]T 
 
Then compute the filter gain Kk and the updated state mean 
mk and covariance Pk: 

 
                                                                 (11) 

                                                                                                            
T

k k k k kP P K S K−= −  
 
 
 

2.3 Augmented Unscented Kalman filter 
 
It is possible to modify the UKF procedure described above by 
forming an augmented state variable, which concatenates the 
state and noise components together, so that the effect of pro-
cess and measurement noises can be used to better capture the 
odd-order moment information. This requires that the sigma 
points generated during the predict step are also used in the 
update step, so that the effect of noise terms are truly propa-
gated through the nonlinearity (Wu et al., 2005). If, however, 
we generate new sigma points in the update step the aug-
mented approach give the same results as the non-augmented, 
if we had assumed that the noises were additive. If the noises 
are not in the additive form, the augmented version should 
produce more accurate estimates than the non-augmented 
version, even if new sigma points are created during the up-
date step. 

So, the prediction and updating steps  are in the form of: 
 
 
Prediction: 
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So: 

( )x q
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In this way, the noise must be in additive form. 

 
Update: 
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Where we have denoted the component of sigma points corre-
sponding to measurement noise with matric xk−1r . Like the 
state transition function f also the measurement function h is 
now augmented to incorporate the effect of measurement 
noise, which is passed as a second parameter to the function. 
Then compute the filter gain Kk and the updated state mean 
mk and covariance Pk: 
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Note that non-augmented form UKF is computationally less 
demanding than augmented form UKF, because it creates a 
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smaller number of sigma points during the filtering proce-
dure. Thus, the usage of the non-augmented version should be 
preferred over the non-augmented version, if the propagation 
of noise terms doesn’t improve the accuracy of the estimates. 
 
3. The nonlinear model of Boiler-Turbin unit 
The model is based on the boiler-turbine plant P16/G1 at the 
Sydvensb Kraft AB plant in Mamlo, Sweden. The boiler is oil-
fired and the rated power is 160 MW. Data acquired during a 
series of experiments in 1969 form the basis for the system 
identification. Both physics and empirical methods were used 
to produce this boiler-turbine dynamic model [9]. 
Since 1969, the model has undergone a number of alterations. 
Subsequent improvements in the plant model have resulted in 
better models that yield improved predictive abilities for the 
plant. 

This resulted in a 2nd order non-linear system of differential 
equations with fuel flow and control valve setting as the 
control variables and drum pressure and power Output as the 
Output variables. 
Then Bell and Astrom produce a 3rd order non-linear MIMO 
model with fuel flow, control valve position, and feedwater 
flow as control inputs, and drum pressure, power output, and 
drum water level deviation as outputs. 
Boiler- turbin unit is a multivariable, time varying and nonlin-
ear system with strong coupling between the parameters. The 
dynamic of the system is in the form of: 
 

9/8
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9/8
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1 1
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3 3
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Where  
X1, x2, x3  are drum pressure (kg/cm2), power output(MW), 
fluid density (kg/m3) respectively. The normalized inputs to 
the system ul = fuel flow valve position, u2 = steam control 
valve position, and u3 = feedwater flow valve position, and all 
valve position variables are constrained to lie in the interval [0, 
1]. The outputs to the system are y1 (drum pressure), y2 

(output level), y3 is the drum water level in meter. And the 
variable acs, qe are steam quality and the evaporation rate 
(kg/s): 
 

( )( )
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3 1
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x x
− −
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( )2 1 1 30.854 0.147 45.59 2.514 2.096eq u x u u= − + − −  

 
 

 
 
Fig.1 Schematic diagram of the Boiler-Turbin unit 

 
 
 
Fig 2. The simulation of the Boiler- Turbin unit 
 
Figure 1, shows the schematic diagram of a boiler turbin unit, 
and also in figure 2, the simulation of boiler turbin is brought 
that is simulated in Matlab simulation. 
 

4. Simulation Results 
 
For the Boiler- Turbin, as discussed in the previous section, the 
states x1, x2, x3 are estimated with Augmentd Kalman Filter. In 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               1418 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

  

this way, noise must be added to the system. In this method, 
linearization is not needed. So this method is better than the 
traditional kalman filter.  

 
 
Fig.3 The estimation of the state x1 

 
Fig.4 The estimation of the state x2 

 

 
Fig.5 The estimation of the state x3 

 

In the most papers the equiblirium for the Boiler_ Turbin sys-
tem [x1,x2,x3,u1,u2,u3]=[108,66.65,428,0.34,0.69,0.433] is consid-
ered. The above figures show that the estimation of the states 
x1, x2, x3 are accurate.  
 

5. Conclusion 

In this paper, Unscented Kalman filter is discussed, and this 
method is considered for boiler- turbin system. In compare 
with traditional kalman filter, linearization is not needed. 
When linearization is used, only the equiblirium point is ex-
amined, but Unscented kalman filter estimates the states 
around all the points without any linearization and is more 
accurate than the kalman filter and the time for simulation in 
less than the other method.  
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